The Euler spiral: a mathematical history
نویسنده
چکیده
The beautiful Euler spiral, defined by the linear relationship between curvature and arclength, was first proposed as a problem of elasticity by James Bernoulli, then solved accurately by Leonhard Euler. Since then, it has been independently reinvented twice, first by Augustin Fresnel to compute diffraction of light through a slit, and again by Arthur Talbot to produce an ideal shape for a railway transition curve connecting a straight section with a section of given curvature. Though it has gathered many names throughout its history, the curve retains its aesthetic and mathematical beauty as Euler had clearly visualized. Its equation is related to the Gamma function, the Gauss error function (erf), and is a special case of the confluent hypergeometric function. This report is adapted from a Ph. D. thesis done under the direction of Prof. C. H. Séquin. Figure 1: Euler’s spiral.
منابع مشابه
New Criteria for Existence of a Class of Generalized Euler-types Constants
One of the most important mathematical constants is Euler-Mascheroni constant that is the limit of the sequence -------------------------------- and is denoted by gamma. Some other developed constants known as Euler type constants are introduced in order to generalize the above constant. In the present paper, inspired by the functional sequence derivative of the limit summand of functions (i...
متن کاملAll the way with Gauss-Bonnet and the sociology of Mathematics
My reasons for writing this story were stimulated by the discussion in The American Mathematical Monthly between Peter Hilton and Jean Pederson on the one hand and Branko Grunbaum and G. C. Shephard on the other hand [HP] [GS]. The discussion as well as my story involves the Euler-Poincare Number, alias the Euler Characteristic. The discussion centers on whether the Euler-Poincare Number should...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملThe elastica: a mathematical history
This report traces the history of the elastica from its first precise formulation by James Bernoulli in 1691 through the present. The complete solution is most commonly attributed to Euler in 1744 because of his compelling mathematical treatment and illustrations, but in fact James Bernoulli had arrived at the correct equation a half-century earlier. The elastica can be understood from a number...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل